Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces

نویسنده

  • Ajay K. Sharma
چکیده

Let φ and ψ be holomorphic maps on such that φ( ) ⊂ . Let Cφ,Mψ and D be the composition, multiplication and differentiation operators, respectively. In this paper, we consider linear operators induced by products of these operators from Bergman-Nevanlinna spaces AβN to Bloch-type spaces. In fact, we prove that these operators map AβN compactly into Bloch-type spaces if and only if they map A β N boundedly into these spaces. Key word and phrases: Composition operator, Multiplication operator, Differentiation operator, Bergman space, Bloch space, Growth space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Estimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces

Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.

متن کامل

Volterra Composition Operators between Weighted Bergman-nevanlinna and Bloch-type Spaces

Let g and φ be holomorphic maps on D such that φ(D) ⊂ D. Define Volterra composition operators Jg,φ and Ig,φ induced by g and φ as Jg,φf(z) = Z z 0 (f ◦ φ) (ζ) (g ◦ φ)′ (ζ) dζ and Ig,φf(z) = Z z 0 (f ◦ φ)′ (ζ) (g ◦ φ) (ζ) dζ for z ∈ D and f ∈ H(D), the space of holomorphic functions on D. In this paper, we characterize boundedness and compactness of these operators acting between weighted Bergm...

متن کامل

Products of Differentiation and Composition from Weighted Bergman Spaces to Some Spaces of Analytic Functions on the Upper Half-Plane

Let Π = {z ∈ C : Imz > 0} be the upper half-plane in the complex plane. This paper characterizes the bounded products of differentiation operator and composition operator acting from the weighted Bergman space Aα(Π) to the weighted-type space A∞(Π) and the Bloch-type space B∞(Π). Mathematics Subject Classification: Primary 47B38; Secondary 47B33, 47B37

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011